

 $E = E^{\circ} - (0.0592V/n)\log Q$, R = 8.3145 J/(mol K), $F = 96,485 C/(mol e^{-})$, 1A = 1C/s first order half life = $t_{1/2} = 0.693/k$

Reduction half reaction	E°(V)
$Ag^+(aq) + e^- \rightarrow Ag(s)$	0.80
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	0.34
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$Mn^{2+}(aq) + 2e^{-} \rightarrow Mn(s)$	-1.180
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.665

1. What is the strongest type of intermolecular force present in NH₂CH₃?

A) dispersion
B) dipole-dipole
C) hydrogen bonding
D) ion-dipole
E) none of the above
Answer: C
Diff: 1 Page Ref: 11.3

2. Place the following compounds in order of *increasing* strength of intermolecular forces.

CH4 CH3CH2CH3 CH3CH3

A) $CH_3CH_2CH_3 < CH_4 < CH_3CH_3$ B) $CH_3CH_2CH_3 < CH_3CH_3 < CH_4$ C) $CH_3CH_3 < CH_4 < CH_3CH_2CH_3$ D) $CH_4 < CH_3CH_2CH_3 < CH_3CH_3$ E) $CH_4 < CH_3CH_3 < CH_3CH_2CH_3$ Answer: E Diff: 2 Page Ref: 11.3

3. The normal boiling point for H_2Se is higher than the normal boiling point for H_2S . This can be explained by

A) larger dipole-dipole forces for H2Se.

B) larger dispersion forces for H2Se.

C) larger hydrogen-bond forces for H2Se.

D) larger dipole-dipole forces, larger dispersion forces, and larger hydrogen-bond forces for $\rm H_2Se$.

Answer: B Diff: 3 Page Ref: 11.3

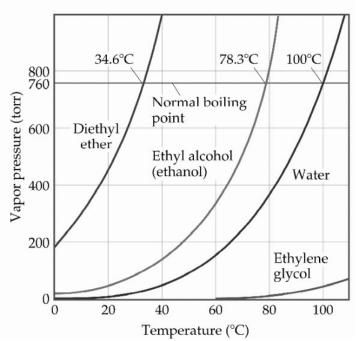
4. Which substance below has the strongest intermolecular forces?

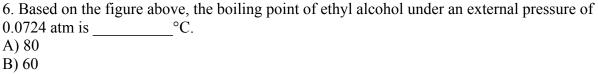
A) A₂X, ΔH_{vap} = 39.6 kJ/mol B) BY₂, ΔH_{vap} = 26.7 kJ/mol C) C₃X₂, ΔH_{vap} = 36.4 kJ/mol D) DX₂, ΔH_{vap} = 23.3 kJ/mol E) EY₃, ΔH_{vap} = 21.5 kJ/mol Answer: A Diff: 1 Page Ref: 11.5

5. Which of the following substances would you predict to have the highest ΔH_{vap} ?

A) Xe

B) CH4


C) He

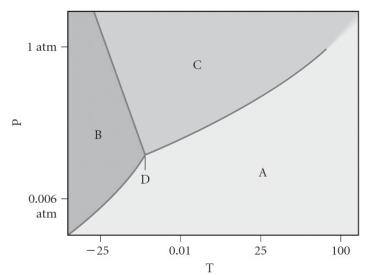

D) Br2

E) N2

Answer: D

Diff: 2 Page Ref: 11.5

C) 70


D) 40 E) 20 Answer: E Diff: 3 Page Ref: 11.5

7. The heat of vaporization of water at 100°C is 40.66 kJ/mol. Calculate the quantity of heat that is absorbed/released when 9.00 g of steam condenses to liquid water at 100°C.
A) 20.3 kJ of heat are absorbed.
B) 20.3 kJ of heat are released.
C) 81.3 kJ of heat are released.
D) 81.3 kJ of heat are released.
Answer: B
Diff: 4 Page Ref: 11.7

8. Ethyl chloride, C₂H₅Cl, is used as a local anesthetic. It works by cooling tissue as it vaporizes; its heat of vaporization is 26.4 kJ/mol. How much heat could be removed by 20.0 g of ethyl chloride?

A) 8.18 kJ B) 341 kJ C) 528 kJ D) 3410 kJ Answer: A Diff: 4 Page Ref: 11.7

9. Assign the appropriate labels to the phase diagram shown below.

A) A = liquid, B = solid, C = gas, D = critical point B) A = gas, B = solid, C = liquid, D = triple point C) A = gas, B = liquid, C = solid, D = critical point D) A = solid, B = gas, C = liquid, D = supercritical fluid E) A = liquid, B = gas, C = solid, D = triple point Answer: B Diff: 1 Page Ref: 11.8 10. Which of the following is considered an ionic solid?
A) (NH4)₂CO₃
B) CCl₄
C) SeBr₂
D) XeF₄
E) None of these is an ionic solid.
Answer: A
Diff: 1 Page Ref: 11.12

11. Identify the type of solid for ice.
A) metallic atomic solid
B) ionic solid
C) nonbonding atomic solid
D) molecular solid
E) networking atomic solid
Answer: D
Diff: 1 Page Ref: 11.12

12. Which of the following compounds will be most soluble in pentane (C5H12)?
A) pentanol (CH3CH2CH2CH2CH2OH)
B) benzene (C6H6)
C) acetic acid (CH3CO2H)
D) ethyl methyl ketone (CH3CH2COCH3)
E) None of these compounds should be soluble in pentane.
Answer: B
Diff: 1 Page Ref: 12.2

13. Give the term for the amount of solute in moles per liter of solution.
A) molality
B) molarity
C) mole fraction
D) mole percent
E) mass percent
Answer: B
Diff: 1 Page Ref: 12.5

14. A solution is prepared by dissolving 49.3 g of KBr in enough water to form 473 mL of solution. Calculate the mass % of KBr in the solution if the density is 1.12 g/mL.
A) 10.4%
B) 8.57%
C) 10.1%
D) 11.7%
E) 9.31%
Answer: E

Diff: 3 Page Ref: 12.5

15. A 1.00 L sample of water contains 0.0036 g of Cl⁻ ions. Determine the concentration of chloride ions in ppm if the density of the solution is 1.00 g/mL.

A) 2.8 ppm B) 7.2 ppm C) 3.6 ppm D) 1.8 ppm E) 5.4 ppm Answer: C Diff: 3 Page Ref: 12.5

16. Choose the solvent below that would show the greatest boiling point elevation when used to make a 0.10 m nonelectrolyte solution.

A) CCl4, $K_b = 29.9^{\circ}C/m$ B) C6H6, $K_b = 5.12^{\circ}C/m$ C) CH3CH2OCH2CH3, $K_b = 1.79^{\circ}C/m$ D) CH3CH2OH, $K_b = 1.99^{\circ}C/m$ E) CHCl3, $K_b = 4.70^{\circ}C/m$ Answer: A Diff: 1 Page Ref: 12.6

17. Place the following solutions in order of *increasing* osmotic pressure.

I. 0.15 M C₂H₆O₂ II. 0.15 M MgCl₂ III. 0.15 M NaCl

A) III < I < IIB) II < III < IC) I < II < IIID) II < I < IIIE) I < III < IIIAnswer: E Diff: 1 Page Ref: 12.6

18. Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable.A) 0.100 *m* AlCl3

B) 0.100 m NaCl C) 0.100 m MgCl₂ D) 0.100 m C6H₁₂O6 E) They all have the same boiling point. Answer: A Diff: 1 Page Ref: 12.7

19. At a given temperature the vapor pressures of benzene and toluene are 183 mm Hg and 59.2 mm Hg, respectively. Calculate the total vapor pressure over a solution of benzene and toluene with Xbenzene = 0.580.

A) 106 mm Hg
B) 121 mm Hg
C) 131 mm Hg
D) 242 mm Hg
Answer: C
Diff: 3 Page Ref: 12.6

20. Write a balanced reaction for which the following rate relationships are true.

$$Rate = -\frac{1}{2} \frac{\Delta[N_2O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta[NO_2]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t}$$
A) 2 N₂O₅ \rightarrow 4 NO₂ + O₂
B) 4 NO₂ + O₂ \rightarrow 2 N₂O₅
C) 2 N₂O₅ \rightarrow NO₂ + 4 O₂
D) $\frac{1}{4}$ NO₂ + O₂ \rightarrow $\frac{1}{2}$ N₂O₅
E) $\frac{1}{2}$ N₂O₅ \rightarrow $\frac{1}{4}$ NO₂ + O₂
Answer: A
Diff: 2 Page Ref: 13.2

21. What is the overall order of the following reaction, given the rate law?

 $2 X + 3 Y \rightarrow 2 Z$ Rate = k[X]¹[Y]² A) 3rd order B) 5th order C) 2nd order D) 1st order E) 0th order Answer: A Diff: 2 Page Ref: 13.3

22. What are the units of k in the following rate law? Rate = k[X][Y]

A) $\frac{M}{s}$ B) Ms C) M-1s-1 D) $\frac{M^2}{s}$ E) $\frac{s}{M^2}$ Answer: C 23. Determine the rate law and the value of k for the following reaction using the data provided.

$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$	[CO]i (M)	[Cl2]i (M)	Initial Rate (M-1s-1)
	0.25	0.40	0.696
	0.25	0.80	1.97
	0.50	0.80	3.94
$D_{11} = 11 M 2/2 + 1 [CO][C] = 12$	<i>'</i> `		

A) Rate = 11 M-3/2s-1 [CO][Cl2]3/2B) Rate = 36 M-1.8s-1 [CO][Cl2]2.8C) Rate = 17 M-2s-1 [CO][Cl2]2D) Rate = 4.4 M-1/2s-1 [CO][Cl2]1/2E) Rate = 18 M-3/2s-1 [CO]2[Cl2]1/2Answer: A Diff: 3 Page Ref: 13.3

24. The rate constant for the first-order decomposition of N₂O is 3.40 s⁻¹. What is the half-life of the decomposition?

A) 0.491 s B) 0.204 s C) 0.236 s D) 0.424 s E) 0.294 s Answer: B Diff: 2 Page Ref: 13.4

25. For a reaction, what generally happens if the temperature is increased?
A) a decrease in k occurs, which results in a faster rate
B) a decrease in k occurs, which results in a slower rate
C) an increase in k occurs, which results in a faster rate
D) an increase in k occurs, which results in a slower rate
E) there is no change with k or the rate
Answer: C
Diff: 1 Page Ref: 13.5

26. Given the following proposed mechanism, predict the rate law for the overall reaction.

 $2NO_2 + Cl_2 \rightarrow 2NO_2Cl$ (overall reaction)

 $\frac{\text{Mechanism}}{\text{NO}_2 + \text{Cl}_2} \rightarrow \text{NO}_2\text{Cl} + \text{Cl slow}$ $\text{NO}_2 + \text{Cl} \rightarrow \text{NO}_2\text{Cl} \quad \text{fast}$

A) Rate = $k[NO_2][Cl_2]$

B) Rate = $k[NO_2]^2[Cl_2]$ C) Rate = $k[NO_2][Cl]$ D) Rate = $k[NO_2Cl][Cl]$ E) Rate = $k[NO_2Cl]^2$ Answer: A Diff: 1 Page Ref: 13.6

27. The decomposition of dinitrogen pentoxide is described by the chemical equation $2 \text{ N}_2\text{O5}(g) \rightarrow 4 \text{ NO}_2(g) + \text{O}_2(g)$

If the rate of disappearance of N₂O₅ is equal to 1.60 mol/min at a particular moment, what is the rate of appearance of NO₂ at that moment?

A) 0.800 mol/min B) 1.60 mol/min C) 3.20 mol/min D) 6.40 mol/min Answer: C Diff: 3 Page Ref: 13.3

28. A particular first-order reaction has a rate constant of 1.35×10^2 s⁻¹ at 25.0°C. What is the magnitude of k at 75.0°C if $E_a = 85.6$ kJ/mol?

A) $3.47 \times 104 \text{ s}\text{-1}$ B) $1.92 \times 104 \text{ s}\text{-1}$ C) 670 s-1D) $3.85 \times 106 \text{ s}\text{-1}$ E) $1.36 \times 102 \text{ s}\text{-1}$ Answer: B Diff: 4 Page Ref: 13.5

29. The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.

30. Determine the value of K_c for the following reaction if the equilibrium concentrations are as follows: $[N_2]_{eq} = 3.6 \text{ M}$, $[O_2]_{eq} = 4.1 \text{ M}$, $[N_2O]_{eq} = 3.3 \times 10^{-18} \text{ M}$.

 $2 N_2(g) + O_2(g) \quad 2 N_2O(g)$ A) 2.2×10^{-19} B) 4.5×10^{18} C) 2.0×10^{-37} D) 5.0×10^{36} E) 4.9×10^{-17} Answer: C Diff: 3 Page Ref: 14.6

31. In a reaction mixture containing only products, what is the value of Q?
A) -1
B) 1
C) ∞
D) 0
E) It cannot be determined without concentrations.
Answer: C
Diff: 1 Page Ref: 14.7

32. Consider the following reaction and its equilibrium constant:

 $4 \text{ CuO}(s) + \text{CH}_4(g)$ $\text{CO}_2(g) + 4 \text{ Cu}(s) + 2 \text{ H}_2\text{O}(g)$ $\text{K}_c = 1.10$

A reaction mixture contains 0.22 M CH4, 0.67 M CO₂ and 1.3 M H₂O. Which of the following statements is TRUE concerning this system?

A) The reaction will shift in the direction of products.

B) The equilibrium constant will increase.

C) The reaction quotient will increase.

D) The reaction will shift in the direction of reactants.

E) The system is at equilibrium.

Answer: D

Diff: 3 Page Ref: 14.7

33. The following reaction is exothermic. Which change will shift the equilibrium to the left? $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) = 2 \operatorname{SO}_3(g)$

A) raising the temperature
B) adding SO3
C) removing O2
D) all of the above
E) none of the above
Answer: D
Diff: 1 Page Ref: 14.9

34. Consider the following reaction at equilibrium. What effect will increasing the volume of the reaction mixture have on the system?

 $2 H_2S(g) + 3 O_2(g) = 2 H_2O(g) + 2 SO_2(g)$

9 Copyright (c) 2011 Pearson Education, Inc. A) The reaction will shift to the right in the direction of products.

B) No effect will be observed.

C) The reaction will shift to the left in the direction of reactants.

D) The equilibrium constant will decrease.

E) The equilibrium constant will increase.

Answer: C

Diff: 2 Page Ref: 14.9

35. At a certain temperature the equilibrium constant, K_c , equals 0.11 for the reaction:

2 ICl(g) $I_2(g) + Cl_2(g)$.

What is the equilibrium concentration of ICl if 0. 45 mol of I₂ and 0. 45 mol of Cl₂ are initially mixed in a 2.0-L flask?

A) 0. 14 M

B) 0. 17 M

C) 0. 27 M

D) 0. 34 M

Answer: A

Diff: 5 Page Ref: 14.8

36. Which of the following is a Br nsted-Lowry base?

A) CH4

B) HCN

C) NH3

D) Cl₂

E) None of the above are Br nsted-Lowry bases.

Answer: C

Diff: 1 Page Ref: 15.3

37. What is the conjugate base of H_2PO4^- ?

A) HPO42-B) PO43-

C) H3PO4

0) 1131 04

D) H3O+

E) OH-

Answer: A

Diff: 1 Page Ref: 15.3

38. Give the characteristics of a strong acid.
A) ionizes completely in aqueous solutions
B) has a very electronegative atom attached to the oxygen
C) has a polar bond
D) has a weaker bond to hydrogen
E) all of the above
Answer: E
Diff: 1 Page Ref: 15.4

39. Which of the following is a WEAK acid? A) HClO4 B) H₂SO₄ C) HCl D) HCO₂H E) HNO3 Answer: D Diff: 1 Page Ref: 15.4 40. Which of the following is TRUE? A) A neutral solution contains $[H_2O] = [H_3O^+]$ B) An neutral solution does not contain any H₃O⁺ or OH⁻ C) An acidic solution has $[H_3O^+] > [OH^-]$ D) A basic solution does not contain H₃O⁺ E) None of the above are true. Answer: C Diff: 1 Page Ref: 15.5

41. Calculate the concentration of OH^- in a solution that contains 3.9 x 10⁻⁴ M H₃O⁺ at 25°C. Identify the solution as acidic, basic or neutral.

A) 2.6×10^{-11} M, acidic B) 2.6×10^{-11} M, basic C) 3.9×10^{-4} M, neutral D) 2.7×10^{-2} M, basic E) 2.7×10^{-2} M, acidic Answer: A Diff: 2 Page Ref: 15.5

42. Calculate the hydroxide ion concentration in an aqueous solution with a pH of 9.85 at 25°C. A) 7.1×10^{-5} M B) 4.2×10^{-10} M C) 8.7×10^{-10} M D) 6.5×10^{-5} M E) 1.4×10^{-10} M Answer: A Diff: 2 Page Ref: 15.5

43. Which of the following acids is the WEAKEST? The acid is followed by its K_a value. A) HC2H3O2, 1.8×10^{-5} B) HIO, 2.3×10^{-11} C) HBrO, 2.3×10^{-9} D) HCIO, 2.9×10^{-8} E) C6H5CO2H, 6.3×10^{-5} Answer: B 44. Determine the pH of a 0.116 M Ba(OH)₂ solution at 25°C. A) 8.62 B) 13.06 C) 13.37 D) 0.63 E) 12.56 Answer: C Diff: 2 Page Ref: 15.7 45. Determine the K_b for CN⁻ at 25°C. The K_a for HCN is 4.9×10^{-10} . A) 4.9×10^{-14} B) 2.3 × 10-9 C) 1.4 × 10-5 D) 2.0 × 10-5 E) 3.7 × 10-7 Answer: D Diff: 2 Page Ref: 15.8

46. Determine the pH of a 0.18 M H₂CO₃ solution. Carbonic acid is a diprotic acid whose $K_{a1} = 4.3 \times 10^{-7}$ and $K_{a2} = 5.6 \times 10^{-11}$. A) 11.00 B) 10.44 C) 5.50 D) 4.31 E) 3.56 Answer: E Diff: 5 Page Ref: 15.9

47. A solution with a hydrogen ion concentration of 3.25×10^{-6} M is ______ and has a hydroxide ion concentration of ______. A) acidic, 3.08×10^{-8} M B) acidic, 3.08×10^{-9} M C) basic, 3.08×10^{-8} M D) basic, 3.08×10^{-9} M Answer: B Diff: 3 Page Ref: 15.5

48. Which one of the following salts, when dissolved in water, produces the solution with a pH *closest* to 7.00?
A) NH4Br
B) Ca O
C) K HSO4
D) Cs I
Answer: D

Diff: 1 Page Ref: 15.8

49. Which one of the following statements is TRUE?

A) A buffer is an aqueous solution composed of two weak acids.

B) A buffer can absorb an unlimited amount of acid or base.

C) A buffer resists pH change by neutralizing added acids and bases.

D) A buffer does not change pH when strong acid or base is added.

E) None of the above are true.

Answer: C

Diff: 1 Page Ref: 16.2

50. You wish to prepare an HC₂H₃O₂ buffer with a pH of 5.44. If the pK_a of is 4.74, what ratio of C₂H₃O₂⁻/HC₂H₃O₂ must you use?

A) 0.70 B) 0.20 C) 1.4 D) 5.0 E) 1.1 Answer: D Diff: 2 Page Ref: 16.2

51. Calculate the pH of a solution formed by mixing 200.0 mL of 0.30 M HClO with 100.0 mL of 0.20 M KClO. The K_a for HClO is 2.9×10^{-8} .

A) 5.99 B) 8.01 C) 7.54 D) 7.06 E) 6.46 Answer: D Diff: 4 Page Ref: 16.2

52. Which of the following acids (listed with pK_a values) and their conjugate base would form a buffer with a pH of 8.10? A) HC7H5O2, $pK_a = 4.19$ B) HF, $pK_a = 3.46$ C) HClO, $pK_a = 7.54$ D) HCN, $pK_a = 9.31$ E) HClO2, $pK_a = 1.96$ Answer: C Diff: 1 Page Ref: 16.3

53. A 100.0 mL sample of 0.18 M HClO4 is titrated with 0.27 M LiOH. Determine the pH of the solution before the addition of any LiOH.

A) 1.74
B) 1.05
C) 0.74
D) 0.57

E) 1.57 Answer: C Diff: 2 Page Ref: 16.4

54. A 100.0 mL sample of 0.10 M Ca(OH)2 is titrated with 0.10 M HBr. Determine the pH of the solution after the addition of 300.0 mL HBr.
A) 1.60
B) 1.30
C) 1.00
D) 12.40
E) 1.12
Answer: A
Diff: 3 Page Ref: 16.4

55. Determine the molar solubility of CuCl in a solution containing 0.050 M KCl. $K_{sp} (CuCl) = 1.0 \times 10^{-6}$. A) 1.0×10^{-12} M B) 5.0×10^{-7} M C) 2.0×10^{-5} M D) 1.0×10^{-3} M E) 0.050 M Answer: C Diff: 2 Page Ref: 16.5

56. Determine the molar solubility of BaF₂ in pure water. K_{sp} for BaF₂ = 2.45 × 10-5.

A) 1.83×10^{-2} M B) 1.23×10^{-5} M C) 2.90×10^{-2} M D) 4.95×10^{-3} M E) 6.13×10^{-6} M Answer: A Diff: 3 Page Ref: 16.5

57. Which of the following solutions is a good buffer system?
A) A solution that is 0.10 M HC2H3O2 and 0.10 M LiC2H3O2
B) A solution that is 0.10 M HF and 0.10 M NaC2H3O2
C) A solution that is 0.10 M HCl and 0.10 M NH4⁺
D) A solution that is 0.10 M NaOH and 0.10 M KOH
E) None of the above are buffer systems.
Answer: A
Diff: 1 Page Ref: 16.2

58. Which of the following compounds solubility will not be affected by a low pH in solution?A) AgClB) Mg(OH)2

C) CaF₂ D) CuS E) BaCO₃ Answer: A Diff: 1 Page Ref: 16.5

59. Which of the following processes have a $\Delta S > 0$? A) CH₃OH(l) \rightarrow CH₃OH(s) B) N₂(g) + 3 H₂(g) \rightarrow 2 NH₃(g) C) CH₄(g) + H₂O (g) \rightarrow CO(g) + 3 H₂(g) D) Na₂CO₃(s) + H₂O(g) + CO₂(g) \rightarrow 2 NaHCO₃(s) E) All of the above processes have a DS > 0. Answer: C Diff: 2 Page Ref: 17.3

60. Consider a reaction that has a positive ΔH and a positive ΔS . Which of the following statements is TRUE?

A) This reaction will be spontaneous only at high temperatures.

B) This reaction will be spontaneous at all temperatures.

C) This reaction will be nonspontaneous at all temperatures.

D) This reaction will be nonspontaneous only at high temperatures.

E) It is not possible to determine without more information.

Answer: A

Diff: 2 Page Ref: 17.5

61. Above what temperature does the following reaction become nonspontaneous?

 $2 H_2S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2O(g)$ $\Delta H = -1036 \text{ kJ}; \Delta S = -153.2 \text{ J/K}$

A) 6.762 × 10³ K
B) 158.7 K
C) 298 K
D) This reaction is nonspontaneous at all temperatures.
E) This reaction is spontaneous at all temperatures.
Answer: A
Diff: 3 Page Ref: 17.5

62. Given the following equation,

 $N_2O(g) + NO_2(g) \rightarrow 3 NO(g) \qquad \Delta G^{\circ}_{rxn} = -23.0 \text{ kJ}$

Calculate ΔG°_{rxn} for the following reaction.

$$3N_2O(g) + 3NO_2(g) \rightarrow 9 NO(g)$$

A) -23.0 kJ

B) 69.0 kJ C) -69.0 kJ D) -7.67 kJ E) 23.0 kJ Answer: C Diff: 2 Page Ref: 17.7

63. Which of the following is NOT true for ΔG_{rxn} ?

A) If $\Delta G^{\circ}_{rxn} > 0$, the reaction is spontaneous in the forward direction.

B) If Q = 1, then $DG_{rxn} = \Delta G^{\circ}rxn$.

C) If $\Delta G^{\circ}_{rxn} = 0$, the reaction is spontaneous in the reverse direction.

D) If $\Delta G^{\circ}_{rxn} > 0$, the reaction is spontaneous in the reverse direction.

E) Under equilibrium conditions, $\Delta G_{rxn} = 0$.

Answer: A

Diff: 4 Page Ref: 17.8

64. Identify the statement that is FALSE.

A) The entropy of a gas is greater than the entropy of a liquid.

B) Entropy generally increases with increasing molecular complexity.

C) Free atoms have greater entropy than molecules.

D) Entropy increases with dissolution.

E) For noble gasses, entropy increases with size.

Answer: C

Diff: 1 Page Ref: 17.6

65. Balance the following redox reaction if it occurs in basic solution. What are the coefficients in front of Br_2 and OH^- in the balanced reaction?

 $Br_2(l) \rightarrow BrO_3(aq) + Br(aq)$

A) $Br_2 = 1$, $OH^- = 2$ B) $Br_2 = 2$, $OH^- = 5$ C) $Br_2 = 3$, $OH^- = 3$ D) $Br_2 = 3$, $OH^- = 6$ E) $Br_2 = 1$, $OH^- = 6$ Answer: D Diff: 4 Page Ref: 18.2

66. Identify the location of reduction in an electrochemical cell.

A) the anode
B) the cathode
C) the electrode
D) the salt bridge
E) the socket
Answer: B
Diff: 1 Page Ref: 18.3

67. What is the reducing agent in the redox reaction represented by the following cell notation?

Ni(s) Ni $^{2+}(aq) \mid \mid Ag^{+}(aq) \quad Ag(s)$ A) Ni(s) B) $Ni^{2+}(aq)$ C) $Ag^{+}(aq)$ D) Ag(s)Answer: A Page Ref: 18.4

68. Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25°C. (The equation is balanced.)

 $Pb(s) + Br_2(1) \rightarrow Pb^{2+}(aq) + 2 Br^{-}(aq)$ $Pb^{2+}(aq) + 2 e^{-} \rightarrow Pb(s)$ $E^{\circ} = -0.13 V$ $Br_2(1) + 2 e^- \rightarrow 2 Br(aq) = E^\circ = +1.07 V$ A) +1.20 V B) +0.94 V C) -0.94 V D) -1.20 V E) -0.60 V Answer: A Diff: 2 Page Ref: 18.4

E) Pt

Diff: 1

69. Use the tabulated half-cell potentials to calculate ΔG° for the following balanced redox reaction.

$$Pb^{2+}(aq) + Cu(s) \rightarrow Pb(s) + Cu^{2+}(aq)$$

A) -41 kJ B) -0.47 kJ C) +46 kJ D) +91 kJ E) -21 kJ Answer: D Diff: 3 Page Ref: 18.5

70. What is the reduction half-reaction for the following overall galvanic cell reaction? $Co^{2+}(aq) + 2 Ag(s) \rightarrow Co(s) + 2 Ag^{+}(aq)$ A) $Ag(s) + e^- \rightarrow Ag^+(aq)$ B) $Ag^+(aq) + e^- \rightarrow Ag(s)$ C) $\operatorname{Co}^{2+}(aq) + 2 e^{-} \rightarrow \operatorname{Co}(s)$ D) $\operatorname{Co}^{2+}(aq) + e^{-} \rightarrow \operatorname{Co}(s)$

Answer: C Diff: 3 Page Ref: 18.3