TEAM PROBLEM

Chapter 12
You have 100.0 mL of NaCl solution that is 13.5% by mass (with a density of $1.12 \mathrm{~g} / \mathrm{mL}$). If you wanted the boiling point to be $104.4^{\circ} \mathrm{C}$, you will need to add either NaCl or water. Which will you add and what mass is needed?

ANSWER:

Plan for how to solve

- Find out the molality needed to raise the BP to $104.4^{\circ} \mathrm{C}$
- Find the molality of the current solution
- Decide if you need to add NaCl (b/c it the concentration is too low) or water (b/c the concentration is too high)
- Figure out how much to add

Step 1: Find the molality to raise the BP to $104.4^{\circ} \mathrm{C}$

- $\Delta \mathrm{T}_{\mathrm{b}}=i \mathrm{~K}_{\mathrm{b}} \mathrm{m}$
- i is the van't Hoff factor - because NaCl dissolves into 2 ions we use " 2 "
- K_{b} is the boiling point elevation constant - look it up to get $0.52{ }^{\circ} \mathrm{C} / \mathrm{m}$
- $4.4^{\circ} \mathrm{C}=(2)\left(0.52{ }^{\circ} \mathrm{C} / \mathrm{m}\right) \mathrm{m}$
$4.23 \mathrm{~m}=\mathrm{m}$ this is the molality (moles of solute per kg of solvent) that is required
Step 2: Find the molality of the current solution
- molality is moles of solute per kg of solvent
- need the moles of NaCl
- need the kg of water
- $100.0 \mathrm{~mL}(1.12 \mathrm{~g} / 1 \mathrm{~mL})=112 \mathrm{~g}$ of solution (not water)
- 13.5% by mass is NaCl
- $112 \mathrm{~g}(13.5 \mathrm{gNaCl} / 100 \mathrm{~g}$ solution $)=15.12 \mathrm{~g} \mathrm{NaCl}$ is dissolved
- That means 112 g solution $-15.12 \mathrm{~g} \mathrm{NaCl}=96.88 \mathrm{~g}$ is water $=0.09688 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$
- $15.12 \mathrm{~g} \mathrm{NaCl}(1 \mathrm{~mol} / 58.5 \mathrm{gNaCl})=0.26 \mathrm{~mol} \mathrm{NaCl}$
- $0.26 \mathrm{~mol} \mathrm{NaCl} / 0.09688 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=2.68 \mathrm{~m} \leftarrow$ this is the molality of the current solution

Step 3: Decide if you need to add NaCl or water

- You need: 4.23 m
- You have: 2.68m
- the solution is not concentrated enough - you will need to add salt

Step 4: Figure out how much NaCl to add

- First figure out how much total NaCl you would need to add using the correct molality
- $0.09688 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}(4.23 \mathrm{~mol} \mathrm{NaCl} / 1 \mathrm{~kg} \mathrm{H} 2 \mathrm{O})=0.41 \mathrm{~mol} \mathrm{NaCl}$
- $0.41 \mathrm{~mol} \mathrm{NaCl}(58.5 \mathrm{~g} / 1 \mathrm{~mol})=23.97 \mathrm{~g} \mathrm{NaCl}$
- Decide how much you need to add
- the solution already has 15.12 g NaCl (from earlier calculation)
- $23.97 \mathrm{~g}-15.12 \mathrm{~g}=8.85 \mathrm{~g}$ of NaCl needs to be added!

