CHM 104 Team Problem ANSWERS

Chapter 11 (part 2)

\#76 (Clausius-Clapeyron Equation)
Use the data below regarding Nitrogen's vapor pressure to determine the: Heat of Vaporization \& the normal boiling point.

Temperature (K)	Vapor Press. (torr)
65	130.5
70	289.5
75	570.8
80	1028
85	1718

ANSWER:

$1 / \mathrm{T}$	$\ln \mathrm{P}$
0.0154	4.871
0.0143	5.668
0.0133	6.347
0.0125	6.935
0.0118	7.449

$y=-713.1 x+15.85$
so
$-713.1=-\Delta \mathrm{H}_{\text {vap }} / 8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$\Delta \mathrm{H}_{\text {vap }}=5928.7 \mathrm{~J} / \mathrm{mol}$ does this make sense compare to water? $(40.7 \mathrm{~kJ} / \mathrm{mol})$
Now for the normal BP - when $\mathrm{VP}=1 \mathrm{~atm}$ or 760 torr
$(\ln 760)=-713.1(x)+15.85$
$\mathrm{x}=0.0129 \mathrm{~K}^{1-} \rightarrow$ remember this is $1 / T$
$\mathrm{T}=77.5 \mathrm{~K} \rightarrow$ does this make sense? check the chart, check online
\#145
The heat of combustion of CH_{4} is $890.4 \mathrm{~kJ} / \mathrm{mol}$ and the heat capacity of water is $75.2 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. What is the volume of methane (at $298 \mathrm{~K} \& 1.00 \mathrm{~atm}$) would be needed to convert 1.00 L of water (at 298 K) to water vapor at 373 K ?

ANSWER:
To find the volume of a gas use: $\mathrm{PV}=\mathrm{nRT}$
$V=(n R T) / P$
you know:

- $\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{1-} \mathrm{K}^{1-}$
- $\mathrm{P}=1 \mathrm{~atm}$
- $\mathrm{T}=298 \mathrm{~K}$
- $\mathrm{n}=$?? you don't know the amount of methane needed so...

The amount of methane depends on the amount of heat we will need.
Find the heat needed to convert 1.00 L of water from 298 K to 373 K water vapor.
This will have 2 steps:

- Heat the liquid water from $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ to liquid water at $373 \mathrm{~K}\left(100^{\circ} \mathrm{C}\right)$
- Heat the liquid water at 373 K to water vapor at 373 K (boil the water)

Step 1: energy needed to heat the liquid to boiling point
$\mathrm{q}=\mathrm{m}_{\mathrm{w}} \mathrm{C}_{\mathrm{s}} \Delta \mathrm{T}$
we know the specific heat $\left(\mathrm{C}_{\mathrm{s}}\right)$ in $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ so we need the water in moles

- $1.00 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~g}$ (density of water is $1 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$)
- $1000 \mathrm{~g}(1 \mathrm{~mol} / 18 \mathrm{~g})=55.6 \mathrm{~mol}$
$\mathrm{q}=(55.6 \mathrm{~mol})\left(75.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(75 \mathrm{~K}) \quad \Delta \mathrm{T}=373 \mathrm{~K}-298 \mathrm{~K}$
$\mathrm{q}=313,333 \mathrm{~J}=313 \mathrm{~kJ}$
Step 2: energy to boil the water (liquid to vapor)
$\Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (constant from the book)
$55.6 \mathrm{~mol}(40.7 \mathrm{~kJ} / 1 \mathrm{~mol})=2263 \mathrm{~kJ}$
Total energy needed: $313 \mathrm{~kJ}+2263 \mathrm{~kJ}=2576 \mathrm{~kJ}$
The Heat of combustion of methane $=890.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ so we can find the moles of methane needed...
- $2576 \mathrm{~kJ}(1 \mathrm{~mol} / 890.4 \mathrm{~kJ})=2.89 \mathrm{~mol}$ methane needed

Plug \& chug into $\mathrm{PV}=\mathrm{nRT}$!
$(1 \mathrm{~atm}) \mathrm{V}=(2.89 \mathrm{~mol})\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})$
$\mathrm{V}=70.7 \mathrm{~L}$ of methane

